Tuyer:
 AN24 \& AN28 Annunciators
 Instruction Manual

- 1/8 DIN Annunciators with NEMA 4X, IP65 Front
- Switch, Transistor, and Logic Level Inputs
- 4 or 8-Point Monitoring
- 8 Field Selectable ISA Sequences Including First-Out
- Multiple-Unit First-Out Indication
- Free Custom Message Labels
- Silence, Acknowledge, and Reset Functions
- Sunlight Readable Indication
- Shallow Depth Case Extends Only 3.6" (91 mm) Behind Panel
- Isolated 24 VDC @ 200 mA Transmitter Power Supply (AC Models)
- 2 SPDT Relays for Alarm Activated Devices
- Operating Temperature Range: -40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
- UL \& C-UL Listed. E160849; 508 Industrial Control Equipment
- Input Power Options: 85-265 VAC / 90-265 VDC or 12-36 VDC / 12-24 VAC
- Built-in Internal 85 dB Horn with Silence Pushbutton
- 3-Year Warranty

Disclaimer

The information contained in this document is subject to change without notice. Dwyer Instruments, Inc makes no representations or warranties with respect to the contents hereof; and specifically disclaims any implied warranties of merchantability or fitness for a particular purpose.

CAUTION

- Read complete instructions prior to installation and operation of the annunciator.

WARNINGS

- Risk of electric shock or personal injury.
- This product is not recommended for life support applications or applications where malfunctioning could result in personal injury or property loss. Anyone using this product for such applications does so at his/her own risk. Dwyer Instruments, Inc shall not be held liable for damages resulting from such improper use.

WARNING

Cancer and Reproductive Harm - www.P65Warnings.ca.gov

Limited Warranty

Dwyer Instruments, Inc warrants this product against defects in material or workmanship for the specified period under "Specifications" from the date of shipment from the factory. Dwyer's liability under this limited warranty shall not exceed the purchase value, repair, or replacement of the defective unit. See Warranty Information and Terms \& Conditions on www.dwyer-inst.com for complete details.
© 2020 Dwyer Instruments, Inc.
All rights reserved.

Introduction

The Series AN24/AN28 is a multipurpose pane mounted alarm annunciator available for four or eight inputs.
It can be set up to respond to alarm conditions based on 8 field selectable alarm sequences, including firstout indication. The alarm channels accept normally open, normally closed, NPN open collector transistor, and logic level inputs. Three front panel pushbuttons are used during sequence operation to silence the horn, acknowledge the first out alarm, and reset cleared channels as required by the sequences.
The Series AN24/AN28 has two SPDT relays that can be used for additional external alarm indication, additional audible devices, or for process control.

Ordering Information

85-265 VAC* Model	12-36 VDC* Model	Description
AN24-1	AN24-2	4 Channel Annunciator
AN28-1	AN28-2	8 Channel Annunciator
* All models may be powered from AC or DC, see Specifications for details.		

Enclosures

Series	\# of Meters	Material	Mounting
PME-01	1	Low-Cost Plastic NEMA 4X	Through Cover
PME-02	2		
PME-11	1	Plastic NEMA 4X	Through Door
PME-12	2		
PME-13	3		
PME-14	4		
PME-15	5		
PME-16	6		

Table of Contents

Introduction2
Ordering Information 2
Quick Setup Guide 5
Sequence Selection 5
NO/NC Inputs 5
Basic Connections 5
Specifications 5
General 6
Input 6
Relays 6
Compliance Information7
Safety 7
Electromagnetic Compatibility 7
Safety Information 7
Installation 7
Unpacking 7
Panel Mounting 7
Dimensions 8
Connections 8
Connectors Labeling 8
Power Connections 9
Signal Connections 9
Relays and 24 V Output Connections 9
Switching Inductive Loads 10
External Input Types 10
Multiple Unit First-Out Indication Connections 10
Setup and Programming 11
Overview 11
Front Panel Pushbuttons and Status LED Indicators 11
Full Function Test. 11
Multiple Unit First-Out Indication 11
Shared Front Panel Buttons 11
Annunciator Sequence Selection 12
Sequence Programming 12
Sequence Descriptions 12
Normally Open/Normally Closed Input Setup 12
Programming NO/NC Inputs 12
NO/NC Programming Example 13
Relay Operation 13
Relay 1 Operation 13
Relay 2 Operation 13
Relay Fail-Safe 13
Programming Relay Fail-Safe 13
Relay Fail-Safe Programming Example 14
Relay Operation Overview 14
Audible Horn Enable/Disable 14
Enabling/Disabling Silence Option 14
No Lock-In Sequence Option 15
Reset to Factory Defaults 15
Troubleshooting 15
Full Sequence Descriptions 16
Features 16
Sequence Condition Descriptions 16
LED Condition Descriptions 16
ISA Sequence A 16
ISA Sequence F2A. 17
ISA Sequence F1A 17
ISA Sequence F3A 18
Input Follower Indication 19
ISA Sequence M 19
ISA Sequence F1M 19
ISA Sequence F2M 20
Table of Figures
Figure 2. Panel Cutout and Mounting7
Figure 3. Case Dimensions - Side View 8
Figure 4. Case Dimensions - Top View 8
Figure 5. Connector Labeling for AN24-1 8
Figure 6. Connector Labeling for AN28-1 8
Figure 7. Connector Labeling for AN24-2 8
Figure 8. Connector Labeling for AN28-2 8
Figure 9. Power Connections 9
Figure 10. NO/NC Contact Inputs 9
Figure 11. Open Collector NPN Transistor Inputs 9
Figure 12. Relay \& 24 V Output Connections 9
Figure 13. AC and DC Loads Protection 10
Figure 14. Low Voltage DC Loads Protection 10
Figure 17. System with Multiple Units Share First-Out 10
Figure 18. Shared Pushbutton Connections 11
Figure 19. DIP Switch Location 12

Quick Setup Guide

The following overview details how to set up the annunciator for most common uses.

Sequence Selection

The two most common sequences are ISA A and ISA F2A. Select the sequence using the four-position switch on the rear of the unit above the signal connector. For complete sequence details, see page 16.

ISA A

ISA F2A

NO/NC Inputs

Each input can be set for normally open (NO) or normally closed (NC) contacts. Each input channel is programmed individually. The default setting is for all inputs to be NO.
To set inputs to NC:

1. Press and hold ACK and RESET for 3 seconds until all LEDs cycle.
2. Press ACK within 3 seconds of release. All LEDs will blink. If ACK is not pressed within 3 seconds, the unit will return to run mode.
3. Press ACK again within 3 seconds of release. If ACK is not pressed within 3 seconds, the unit will return to run mode.
The LED for the channel being programmed will display brightly on or off. All other channel indication LEDs will be at low intensity to indicate programming mode.
4. Press the RESET pushbutton to turn LED 1 off for a NO input, or on for a NC input for channel 1.
5. Press ACK to accept the input type and program channel 2.
6. Repeat steps 4 and 5 for all input channels.

Press and hold ACK for five seconds to return to normal operation with the programmed input types.

Basic Connections

All connections are made to removable screw terminal connectors located at the rear of the instrument. For complete connection details, see page 8.

WARNINGS

- Use copper wire with $60^{\circ} \mathrm{C}$ or $60 / 75^{\circ} \mathrm{C}$ insulation for all line voltage connections.
- Observe all safety regulations.
- Electrical wiring should be performed in accordance with all applicable national, state, and local codes to prevent damage to the instrument and ensure personnel safety.

Connector Labeling

The connectors label, affixed to the instrument, shows the location of all connectors available with requested configuration. See Connectors Labeling on page 8.

Power Connections

Power connections are made to a two-terminal connector labeled POWER. The instrument will operate regardless of DC polarity connection. The + and - symbols are only a suggested wiring convention.

Signal Connections

Input signal connections are made to a 14-terminal connector at terminals labeled INPUT CHANNELS. The COM (common) terminal is the return for all input channels.

Relays and 24 V Output Connections

Relay connections are made to a six-terminal connector labeled RELAY1, RELAY2. The COM (common) terminals of the relays should not be confused with the COM (common) terminal of the signal connector. The 24 VDC output is available at the connector labeled 24 V OUT, next to the relays connector.

Additional Information

For additional setup and wiring information, please see the complete details further in this manual.

Specifications

Except where noted all specifications apply to operation at $+25^{\circ} \mathrm{C}$.

General

Display	AN24; Four red LED channel/point indicators. AN28; Eight red LED channel/point indicators. One green LED power indicator.
Alarm Messages	Custom printed adhesive clear labels. AN24 Area: 1.25 " x 60 " ($32 \mathrm{~mm} \times 15 \mathrm{~mm}$), 4 messages AN28 Area: $1.25 \mathrm{l} \times .25$ " ($32 \mathrm{~mm} \times 6 \mathrm{~mm}$), 8 messages Up to 4 lines (AN24) or 2 lines (AN28) of 14 characters of size 9 fonts.
Programming Methods	Rear 4-position switch for sequence selection and horn operation. Three front panel pushbuttons for NO/NC input selection, sequence options, and sequence operation.
Noise Filter	40 ms debounce on inputs (including SIL, ACK, and RST).
Shared FirstOut Systems	1 ms unit-to-unit delay. Maximum of 200 units in the shared first-out system.
Non-Volatile Memory	All programmed settings are stored in nonvolatile memory for a minimum of ten years if power is lost.
Power Options	85-265 VAC, $50 / 60 \mathrm{~Hz}$, 90-265 VDC, 20 W max or 12-36 VDC, 12-24 VAC, 6 W max
Fuse	Required external fuse: UL Recognized, 5 A max, slow blow. Up to 6 annunciators may share one 5 A fuse
Isolated Power Supply	$24 \text { VDC } \pm 10 \% \text { @ } 200 \mathrm{~mA} \text { max }$ Standard on 85-265 VAC powered units only.
Isolation	4 kV input/output-to-power line.
Overvoltage Category	Installation Overvoltage Category II: Local level with smaller transient overvoltages than Installation Overvoltage Category III
Environmental	Operating temperature range: -40 to $65^{\circ} \mathrm{C}$ Storage temperature range: -40 to $85^{\circ} \mathrm{C}$ Relative humidity: 0 to 90% non-condensing
Connections	Removable screw terminal blocks for 12 to 22 AWG wire.
Enclosure	1/8 DIN, high impact plastic, UL 94V-0, front color: black
Mounting	1/8 DIN panel cutout required. Two panel mounting bracket assemblies provided.
Tightening Torque	Screw terminal connectors: $5 \mathrm{lb}-\mathrm{in}(0.56 \mathrm{Nm})$
Overall Dimensions	$\begin{aligned} & 4.68 \text { " } \times 2.45 \text { " } \times 4.19 \text { " } \\ & (62 \mathrm{~mm} \times 119 \mathrm{~mm} \times 106 \mathrm{~mm})(\mathrm{H} \times \mathrm{W} \times \mathrm{D}) \end{aligned}$
Weight	9.6 oz (272 g)
Warranty	3 years parts and labor. See Warranty Information and Terms \& Conditions on www.dwyer-inst.com for complete details.

Input

Input Types	NO or NC switches: No external excitation required Open collector transistor (NPN): Open circuit voltage approximately 3.3 VDC Logic Levels: $\begin{aligned} & \text { LOW }=0 \text { to } 0.9 \mathrm{VDC} \\ & \text { HIGH }=2.4 \text { to } 28 \mathrm{VDC} \end{aligned}$
Update Rate	41 ms following alarm state; 1 ms for alarm state clear
Sequences	Input follower, ISA Sequences A, F1A, F2A, F3A, M, F1M, F2M and F3M per ISA Standard ISA-18.1-1979 R2004.
Sequence Options	A, F1A, F2A, F3A, M, F1M, F2M, and input follower with selectable options -1 (silence pushbutton), -4 (no lock-in), and -6 (no horn) per ISA Standard ISA-18.1-1979 R2004.

Relays

Rating	2 SPDT (Form C); rated 3 A @ 30 VDC or 3 A @ 250 VAC resistive load; $1 / 14 \mathrm{HP}$ @ 125/250 VAC for inductive loads
Electrical Noise Suppression	A snubber should be connected to each relay contact switching inductive loads to prevent disruption to the microprocessor's operation. Recommended snubber value: $0.01 \mu \mathrm{~F} / 470 \Omega$, 250 VAC (PMA-09).
Relay Operation	Relay 1: Alarm state until alarm is acknowledged. Relay 2: Alarm state while any channel indicating alarm condition.
Fail-Safe Operation	Programmable Independent for each relay Note: In fail-safe mode, relay coil is energized in non-alarm condition. In case of power failure, relay will go to alarm state.

Compliance Information

UL Listed	USA and Canada UL 508 Industrial Control Equipment
UL File Number	E212517
Front Panel	UL Type 4X, NEMA 4X, IP65; panel gasket provided
Low Voltage	EN 61010-1:2010
Directive	Safety requirements for measurement, control, and laboratory use

Emissions	EN 55022:2010 Class A ITE emissions requirements
Radiated Emissions	Class A
AC Mains Conducted Emissions	Class A
Immunity	EN 61326-1:2013 Measurement, control, and laboratory equipment EN 61000-6-2:2005 EMC heavy industrial generic immunity standard
RFI - Amplitude Modulated	$80-1000 \mathrm{MHz} 10 \mathrm{~V} / \mathrm{m} 80 \% \mathrm{AM}$ (1 kHz $1.4-2.0 \mathrm{GHz} 3 \mathrm{~V} / \mathrm{m} 80 \% \mathrm{AM}(1 \mathrm{kHz})$ $2.0-2.7 \mathrm{GHz} 1 \mathrm{~V} / \mathrm{m} 80 \% \mathrm{AM}(1 \mathrm{kHz})$
Electrical Fast Transients	$\pm 2 \mathrm{VV}$ AC mains, $\pm 1 \mathrm{kV}$ other
Electrostatic Discharge	$\pm 4 \mathrm{kV}$ contact, $\pm 8 \mathrm{kV}$ air
RFI - Conducted	$10 \mathrm{~V}, 0.15-80 \mathrm{MHz}, 1 \mathrm{kHz} 80 \% \mathrm{AM}$
AC Surge	$\pm 2 \mathrm{kV}$ Common, $\pm 1 \mathrm{kV}$ Differential
Surge	1 KV (CM)
Power- Frequency Magnetic Field	$30 \mathrm{~A} / \mathrm{m} 70 \% \mathrm{~V}$ for 0.5 period
Voltage Dips	40% V for 5 \& 50 periods $70 \% \mathrm{~V}$ for 25 periods
Voltage Interruptions	$<5 \% \mathrm{~V}$ for 250 periods

Safety Information

A CAUTION

- Read complete instructions prior to installation and operation of the instrument.

WARNINGS

- Risk of electric shock.
- Hazardous voltages exist within enclosure. Installation and service should be performed only by trained service personnel.

Installation

There is no need to remove the instrument from its case to complete the installation, wiring, and setup.

Unpacking

Remove the instrument from box. Inspect the packaging and contents for damage. Report damages, if any, to the carrier.
If any part is missing or the unit malfunctions, please contact your supplier or the factory for assistance.

Panel Mounting

- Prepare a standard 1/8 DIN vertical panel cutout - $1.772^{\prime \prime} \times 3.622$ " ($45 \mathrm{~mm} \times 92 \mathrm{~mm}$). Refer to Figure 1 for more details.
- Clearance: allow at least 4" (102 mm) behind the panel for wiring.
- Panel thickness: 0.04" - 0.25" (1.0 mm - 6.4 mm). Recommended minimum panel thickness to maintain Type 4X rating: 0.06" (1.5 mm) steel panel, 0.16 " (4.1 mm) plastic panel.
- Remove the two mounting brackets provided with the annunciator (back-off the two screws so that there is $1 / 4$ " (6.4 mm) or less through the bracket. Slide the bracket toward the front of the case and remove).
- Insert the unit into the panel cutout.
- Install mounting brackets and tighten the screws against the panel. To achieve a proper seal, tighten the mounting bracket screws evenly until the front is snug to the panel along its short side. DO NOT OVER TIGHTEN, as the rear of the panel may be damaged.

Figure 1. Panel Cutout and Mounting

Dimensions

All units: inches [mm]

Figure 2. Case Dimensions - Side View

Figure 3. Case Dimensions - Top View

Connections

All connections are made to removable screw terminal connectors located at the rear of the instrument.

WARNINGS

- Use copper wire with $60^{\circ} \mathrm{C}$ or $60 / 75^{\circ} \mathrm{C}$ insulation for all line voltage connections.
- Observe all safety regulations.
- Electrical wiring should be performed in accordance with all applicable national, state, and local codes to prevent damage to the instrument and ensure personnel safety.

Connectors Labeling

The connectors label, affixed to the instrument, shows the location of all connectors available with requested configuration.

Figure 4. Connector Labeling for AN24-1

Figure 5. Connector Labeling for AN28-1

Figure 6. Connector Labeling for AN24-2

Figure 7. Connector Labeling for AN28-2

Power Connections

Power connections are made to a two-terminal connector labeled POWER. See Connectors Labeling on page 8. The instrument will operate regardless of DC polarity connection. The + and - symbols are only a suggested wiring convention.

POWER CONNECTOR

AC or DC POWER
Recommended External Fuse: 5 A max, Slow Blow
Figure 8. Power Connections

Signal Connections

Input signal connections are made to a 14-terminal connector at terminals labeled INPUT CHANNELS. See Connectors Labeling on page 8. The COM (common) terminal is the return for all types of input signals.

Normally Open (NO) or Normally Closed (NC) Switches

The following figure shows an example of normally open or normally closed contact inputs.
Programming a channel for a normally open or normally closed contact is done with the front panel pushbuttons (see page 12). All channels are initially set for normally open contacts. Each contact is wired across an input channel and common.

Figure 9. NO/NC Contact Inputs

Open Collector NPN Transistor

Each transistor collector is connected to a separate input channel and all emitters connected to common. All channels are factory set for transistor inputs normally in the cutoff or "off" state. For normally active/saturation state or "on" transistors, program inputs for normally closed input operation; see page 12. Open circuit voltage is approximately 3.3 VDC provided by a $47 \mathrm{k} \Omega$ internal pullup resistor.
The following figure shows an example of open collector NPN transistor inputs.

SIGNAL CONNECTOR

Figure 10. Open Collector NPN Transistor Inputs

Logic Level Inputs

Each logic level input is connected to an input channel with common as the return.
Logic level inputs are factory set for normally high active logic level inputs. For normally low input logic levels, program inputs for normally closed input operation, see page 12.
Logic Level Low: 0 to 1.4 VDC
Logic Level High: 1.5 to 28 VDC
Input Impedance: Approximately $47 \mathrm{k} \Omega$

Relays and 24 V Output Connections

Relay connections are made to a six-terminal connector labeled RELAY1 and RELAY2. See Connectors Labeling on page 8. The COM (common) terminals of the relays should not be confused with the COM (common) terminal of the signal connector. The 24 VDC output is available at the connector labeled 24 V OUT, next to the relays connector.

Figure 11. Relay \& 24 V Output Connections

Switching Inductive Loads

The use of snubbers to suppress electrical noise is strongly recommended when switching inductive loads to prevent disrupting the microprocessor's operation. The snubbers also prolong the life of the relay contacts. Suppression can be obtained with resistor-capacitor (RC) networks assembled by the user or purchased as complete assemblies. Refer to the following circuits for RC network assembly and installation:

Figure 12. AC and DC Loads Protection
Choose R and C as follows:
R: 0.5 to 1Ω for each volt across the contacts C: 0.5 to $1 \mu \mathrm{~F}$ for each amp through closed contacts

Notes:

1. Use capacitors rated for 250 VAC.
2. RC networks may affect load release time of solenoid loads. Check to confirm proper operation.
3. Install the RC network at the annunciator's relay screw terminals. An RC network may also be installed across the load. Experiment for best results.

Use a diode with a reverse breakdown voltage two to three times the circuit voltage and forward current at least as large as the load current.

Figure 13. Low Voltage DC Loads Protection

RC Networks (Snubbers) Available from Dwyer

RC networks are available from Dwyer and should be applied to each relay contact switching an inductive load. Part number: PMA-09.

External Input Types

The external Silence (SIL), Acknowledge (ACK), and Reset (RST) inputs may be contacts (i.e. pushbuttons, relay contacts, etc.), open collector inputs (OC), or TTL signals. However, throughout this manual, the term "pushbutton" is used to describe these external inputs. Please refer to the chart below for signal logic.

External Input Type	Active When
Switch/Contact	Closed
Open Collector (OC)	On
TTL	Low

Multiple Unit First-Out Indication Connections

Multiple AN28 and AN24 units can keep a single firstout channel indicated for all connected units. An unlimited number of units may be connected. It is recommended that all units follow the same sequence.
The following figure shows shared first-out indication wiring connections for 3 units. Up to 200 units may be connected for first-out indication.

Figure 14. System with Multiple Units Share First-Out

Setup and Programming Overview

There are no jumpers involved in the setup process of the annunciator. The sequence selector switch located on the rear of the annunciator above the signal connector must be set accordingly for annunciator sequence desired.
Normally open or normally closed input setup, relay fail-safe, and additional sequence options are programmed with the front panel pushbuttons. After power and signal connections have been completed and verified, and the sequence selector switch has been set appropriately, apply power to the annunciator.

For Quick Setup Guide go to page 5.

Front Panel Pushbuttons and Status LED Indicators

Button	Description
	Silence Horn
	Acknowledge Alarm
	Reset Clear Input Channels
LED	Description
Red Indicators 1	Channel status indicators
Green Indicator	Indicates power is on.

1. Quantity 4 red LED on the AN24

Quantity 8 red LED on the AN28

Pushbutton Descriptions SILENCE

Silences the audible alarm without affecting the indication sequence states. This pushbutton may be disabled (see Audible Horn Enable/Disable, page 14).

ACK (Acknowledge)

Acknowledges alarmed channels. See selected sequence details for complete function description (see Full Sequence Descriptions, page 16).

RESET

Resets all acknowledged channels. This button is not used on ISA sequences A, F1A, and F2A, which reset acknowledged channels automatically. See selected sequence details for complete function description (see Full Sequence Descriptions, page 16).

LED TEST (SILENCE \& ACK)

Press and release the SILENCE and ACK pushbuttons to flash the channel indicator LEDs for a lamp test.

Full Function Test

Press and hold SILENCE and ACK for 5 seconds to perform a function test. This tests the sequence operation and hardware by simulating alarm inputs that are cleared in the normal sequence progression. During the function test, all channels enter a simulated alarm state for 3 seconds. All LEDs, pushbuttons, relays, and the audible alarm will follow the selected sequence as if the simulated alarm inputs were real. After 3 seconds, the alarms may be cleared as normal for the selected sequence.

Multiple Unit First-Out Indication

If multiple annunciators are connected for multiple unit shared first-out indication (see page 10), only one input from all connected devices will display as a firstout alarm.
Each individual annunciator will acknowledge and reset the channels on that unit using the pushbuttons on that unit, and independent of all other connected units. Only the unit displaying the first-out will sound the audible alarm.
It is recommended that all connected units be set for the same first-out sequence.

Shared Front Panel Buttons

To control all the units from any of the front panels, connect the SIL, ACK, RST, and COM terminals on each unit.

UNIT 1
SIGNAL CONNECTOR

UNIT 2
SIGNAL CONNECTOR

Figure 15. Shared Pushbutton Connections

Annunciator Sequence Selection

The alarm sequence is selected with the DIP switch located above the signal connector.
Changing sequences while the unit is on will restart the unit.

Sequence Programming

Set switches to the positions shown below for the desired sequence. The annunciator will immediately automatically restart and operate with the new sequence.

Figure 16. DIP Switch Location

Sequence Descriptions

See Page 16 for complete sequence descriptions.

Normally Open/Normally Closed Input Setup

Each input channel is independently programmed for a normally open or normally closed input. All channels are initially programmed at the factory for normally open inputs.

Alarm Conditions for normally open inputs:

1. A closed contact between an input channel and common will cause an alarm condition.
2. An "on" or active transistor between an input channel and common will cause an alarm condition.
3. An active logic level low on an input channel will cause an alarm condition.

Alarm Conditions for normally closed inputs:

1. An open contact between an input channel and common will cause an alarm condition.
2. An "off" or cutoff state transistor between an input channel and common will cause an alarm condition.
3. An active logic level high or no supplied active logic level on an input channel will cause an alarm condition.

Programming NO/NC Inputs

1. Press and hold ACK and RESET for 3 seconds until all LEDs cycle, then release
2. Press ACK within 3 seconds of release while LEDS cycle. 1
3. Press ACK within 3 seconds of release while LEDs blink. 1
4. Press the RESET pushbutton to turn LED 1 off for a NO input, or on for a NC input on input channel 1.
5. Press ACK to accept the input type and program channel 2.
6. Repeat steps 4 and 5 for all input channels.
7. Press and hold ACK for five seconds to return to normal operation with the programmed input types.

During programming, the LED for the channel being programmed will display as either off or brightly on. All other LEDs will be dim.
The green power LED will blink slowly to indicate the unit is in NO/NC setup mode. The unit will automatically leave setup mode if no pushbutton is pressed for 3 minutes.

1The unit will automatically leave setup mode if steps 2 and 3 are not followed.

NO/NC Programming Example

The following is an example of NO/NC setup. Input channel 1 and 2 are changed from the default settings of NO to be NC inputs.

1. Press and hold ACK and RESET for 3 seconds. When all LEDs cycle, release.
2. Press ACK within 3 seconds. All LEDs blink in unison.
3. Press ACK again while LEDs blink
4. LED 1 will be off indicating a NO input for channel 1. All other LEDs will be dim.

5. Press RESET to change LED 1 from off to on, setting channel 1 for a NC input.

6. Press ACK to confirm the NC setting and proceed to program channel 2.

7. Press RESET to change LED 2 from off to on, setting channel 2 for a NC input.

8. Press ACK to confirm the NC setting and program channel 3.
9. Press and hold ACK for five seconds to return to normal operation.

Relay Operation

Relays 1 and 2 have standard functionality as defined below.

Relay 1 Operation

Relay 1 enters alarm state when there is a new alarm. This relay will clear when the alarm is acknowledged, generally by pressing the ACK pushbutton.

Relay 2 Operation

Relay 2 enters alarm state when any channel displays in alarm state. This relay will clear when all indication LEDs are cleared.

Relay Fail-Safe

In fail-safe operation, a relay coil is energized in nonalarm condition. In case of power failure, relays will go to alarm state. Fail-safe operation is set independently for each relay.

Programming Relay Fail-Safe

1. Press and hold ACK and RESET for 3 seconds. When all LEDs cycle, release.
2. Press RESET within 3 seconds of release while LEDs cycle. 1
3. Press RESET within 3 seconds of release while LEDs blink. 1
4. Press the RESET pushbutton to turn LED 1 off for normal operation, or on for fail-safe operation of Relay 1.
5. Press ACK to accept the type of operation for Relay 1.
6. Press the RESET pushbutton to turn LED 2 off for normal operation, or on for fail-safe operation of Relay 2.
7. Press ACK to accept the type of operation for Relay 2.
8. Press and hold ACK for five seconds to return to operation.
During programming, LEDs 1 through 4 will light. The LED being programmed will display as either off or brightly on. The other 3 LEDs will be dim. On a AN28, LEDs 5 through 8 will be off.
The green power LED will blink quickly to indicate the unit is in the advanced programming mode. The unit will automatically leave setup mode if no pushbutton is pressed for 3 minutes.

Note: LED 3 and 4 are used for the silence pushbutton enable/disable option (see page 14) and no lock-in option (see page 15)

[^0]
Relay Fail-Safe Programming Example

The following is an example of relay fail-safe setup. Relays 1 and 2 are changed from the default settings of normal operation to fail-safe operation.

1. Press and hold ACK and RESET for 3 seconds. When all LEDs cycle, release.
2. Press RESET within 3 seconds of release while LEDs cycle. All LEDs blink in unison.
3. Press RESET again within 3 seconds while LEDs blink
4. LED 1 will be off indicating norma operation of relay 1. LEDs 2 through 4 will be dim.

5. Press Reset to change LED 1 from off to on, setting relay 1 for fail-safe operation.

6. Press ACK to confirm the setting for relay 1and proceed to program relay 2.

7. Press RESET to change LED 2 from off to on, setting relay 2 for fail-safe operation.

8. Press ACK to confirm the setting for relay 2.
9. Press and hold ACK for 5 seconds to return to normal operation.

Note: LEDs 3 and 4 are used for the silence pushbutton enable/disable option (see page 14) and no lock-in option (see page 15)

Relay Operation Overview

The following figure illustrates the operation of the relays.

Relay On: Relay is energized
Relay Off: Relay is de-energized.
Alarm Occurrence: A new alarm occurs when there is no previous unacknowledged alarm.
ACK Pressed: The Acknowledge pushbutton is pressed, acknowledging the alarm.
Alarms Cleared: All LED indicators are cleared of alarm state indication

Audible Horn Enable/Disable

The annunciator contains an audible internal horn. This horn may be disabled with the rear-mounted switch located above the signal connector. To enable the horn, move switch 4 to the ON position. To disable the horn, move switch 4 to the OFF position.

Enabling/Disabling Silence Option

ISA sequence option 1, Silence Pushbutton, includes a silence pushbutton. This option may be disabled, removing any effects of the silence pushbutton or silence pushbutton external contact. This option is enabled by factory default.

Silence Pushbutton Enable/Disable

1. Press and hold ACK and RESET for 3 seconds until all LEDs cycle, then release.
2. Press RESET within 3 seconds of release while LEDs cycle. 1
3. Press RESET within 3 seconds of release while LEDs blink. 1
4. Press the ACK pushbutton twice until LED 3 is either off or brightly on.
5. Press the RESET pushbutton to turn LED 3 off to disable the silence pushbutton or brightly on to enable the silence pushbutton.
6. Press ACK to accept the silence pushbutton setting.
7. Press and hold ACK for five seconds to return to normal operation.
The green power LED will blink quickly to indicate the unit is in the advanced programming mode. The unit will automatically leave setup mode if no pushbutton is pressed for 3 minutes.
Note: LED 1 and 2 are used for relay fail-safe setup (see page 13)
${ }_{1}$ The unit will automatically leave setup mode if steps 2 and 3 are not followed.

No Lock-In Sequence Option

ISA sequence option 4 no lock-in, may be added to any sequence. Momentary alarms will clear without the ACK pushbutton. Sequences A, F1A, F2A, and F3A will automatically clear any momentary alarm. Sequences M, F1M, and F2M will clear all momentary alarms when the RESET pushbutton is used, regardless of what channels have previously been acknowledged with ACK.

Selecting No Lock-In Operation

1. Press and hold ACK and RESET for 3 seconds until all LEDs cycle, then release.
2. Press RESET within 3 seconds of release while LEDs cycle. 1
3. Press RESET within 3 seconds while LEDs blink. 1
4. Press the ACK pushbutton three times until LED 4 is either off or brightly on.
5. Press the RESET pushbutton to turn LED 4 off to disable the no lock-in option or on to enable the no lockin option.
6. Press ACK to accept the option setting.
7. Press and hold ACK for five seconds to return to operation.
The green power LED will blink quickly to indicate the unit is in the advanced programming mode. The unit will automatically leave setup mode if no pushbutton is pressed for 3 minutes.

Note: LED 1 and 2 are used for relay fail-safe setup (see page 13), and LED 3 is used for silence pushbutton enable/disable (see page 14).
1 The unit will automatically leave setup mode if steps 2 and 3 are not followed.

Reset to Factory Defaults

1. Hold the ACK and RESET pushbuttons for 3 seconds until all red LEDs cycle. Release once the LEDs begin to cycle.
2. Press and hold the RESET button for 5 seconds. If the RESET button is not pressed within 3 seconds of releasing ACK and RESET, the unit will return to run mode without reset.
3. Reset the 4-position switch on the rear of the control to the indicated default settings.

Troubleshooting

If the annunciator is not working as expected, refer to the recommendations below.

Troubleshooting Tips

Symptom	Check/Action
Power LED off	Check power at power connector
Audible alarm does not sound when alarm state detected	Check: $1 . \quad$Rear switch position 4 is ON. No external pushbutton contacts on the input connector are shorted. Power light blinks and channel/point indicators flash intermittently when powered up. Display sequence does not function as expected. Check that no external pushbutton contacts on the signal connector are shorted to common. Check: 1. Verify sequence selection as shown on page 12. Check that no external pushbutton contacts on the input connector are shorted. If the display locks up or the unit does not respond at all Relay operation is reversed Cycle the power to restart the microprocessor. Other symptoms not described above Check: 1. Fail-safe settings as shown on page 13. Wiring of relay contactsCall Technical Support for assistance.

To reset unit to factory default settings of sequence F2A-1, first out indication with silence and acknowledge pushbuttons with automatic reset, see Reset to Factory Defaults.

Full Sequence Descriptions

The following section describes the operation of the various sequences available in the Series AN24/AN28 alarm annunciator.

Features

Acknowledge Pushbutton: Momentary alarms will not clear until the alarmed channels have been acknowledged with the ACK pushbutton. This will also reset the first out indication. Used in all ISA sequences.
Automatic Reset: Acknowledged momentary alarms will clear automatically when the inputs return to normal. The automatic reset is present in all automatic (A) sequences.
First-Out Indication: The sequence provides a distinct visual indication for the first channel to alarm.

First-Out Reset Pushbutton: Resets the first-out display and assigns the first-out channel to display as a subsequent alarm without any other changes to the sequence. The next alarm input will be a new first-out alarm. Used only in sequence F3A.
Reset Pushbutton: Acknowledged momentary alarms will only clear when reset with the RESET pushbutton. Used in any manual reset (M) sequence.

Sequence Condition Descriptions

The following terms are used in describing the sequence behavior in the following tables:
Alert: The input is in alarm state, and the channel has not been acknowledged with the ACK pushbutton.
Acknowledge: The alarm state is acknowledged with the ACK pushbutton. This will restart the first-out indication.
First Out Reset (F3A Only): The RESET pushbutton is used to reset the first-out indication only.
Normal: Inputs are in the normal state.

LED Condition Descriptions

1st Pt: Indicates the behavior of the first-out channel only.
Next Pt: The behavior of subsequent alarm channels; channels that enter the alarm state after the first-out alarm.

ISA Sequence A

Acknowledge Pushbutton and Automatic Reset
Momentary Alarm

Condition	LED	Horn
Normal	Off	Off
Alert	Flash	On
Normal	Flash	On
ACK Pushbutton		
Acknowledge	Off	Off

Maintained Alarm

Condition	LED	Horn
Normal	Off	Off
Alert	Flash	On
ACK Pushbutton		
Acknowledge	Steady	Off
Normal	Off	Off

Sequence A Switch Positions

Sequence A Flow Chart

Relay Operation

For complete details on relay function, see page 13.
Relay 1 Operation
Relay 1 enters alarm state when there is a new alarm. This relay will clear when the alarms are acknowledged.
Relay 2 Operation
Relay 2 enters alarm state when any channel displays in alarm state. This relay will clear when all indication LEDs are cleared.

ISA Sequence F2A

First-Out Indication with Acknowledge Pushbutton and Automatic Reset

Momentary Alarm

Condition	LED		Horn
	$1_{\text {st }}$ Pt	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
Normal	Flash	Steady	On
ACK Pushbutton			
Acknowledge	Off	Off	Off

Momentary Alarm

Condition	LED		Horn
	$1_{\text {st }}$ Pt	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
ACK Pushbutton			
Acknowledge	Steady	Steady	Off
Normal	Off	Off	Off

Sequence F2A Switch Positions

Sequence F2A Flow Chart

Condition	Normal
1st Pt LED	Off
Next Pt LED	Off
Horn	Off

Condition	Alert				
1st Pt LED	Steady				
	Steady				
	Off				
	Ack Pressed		Condition	Alert	
:---:	:---:	:---:		1st Pt LED	Flash
:---	:---				
Next Pt LED	Steady				
	Horn				

ISA Sequence F1A

First-Out Indication with Acknowledge Pushbutton, No Lock-In of Subsequent Alarms, and Automatic Reset

Momentary Alarm

Condition	LED		Horn
	$1_{\text {st Pt }}$	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
Normal	Flash	Off	On
ACK Pushbutton			
Acknowledge	Off	Off	Off

Momentary Alarm

Condition	LED		Horn
	$1_{\text {st Pt }}$	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
ACK Pushbutton			
Acknowledge	Steady	Steady	Off
Normal	Off	Off	Off

Sequence F1A Switch Positions

Sequence F1A Flow Chart

ISA Sequence F3A

First-Out Indication with Acknowledge Pushbutton, Automatic Reset, and First-Out Reset Pushbutton

Sequence F3A Switch Positions

Momentary Alarm (RESET before ACK)

Condition	LED		Horn
	1st Pt	Next Pt	
Normal	Off	Off	Off
Alert	Intermittent Flash	Fast Flash	On
Normal	Intermittent Flash	Fast Flash	On
RESET Pushbutton			
st Out Reset	Fast Flash	Fast Flash	On
ACK Pushbutton			
Acknowledge	Off	Off	Off

Momentary Alarm (ACK before RESET)

Condition	LED		Horn
	1st Pt	Next Pt	
Normal	Off	Off	Off
Alert	Intermittent Flash	Fast Flash	On
Normal	Intermittent Flash	Fast Flash	On
ACK Pushbutton			
Acknowledge	Slow Flash	Off	Off
RESET Pushbutton			
Reset	Off	Off	Off

Maintained Alarm (RESET before ACK)

Condition	LED		Horn
	$1_{\text {st }}$ Pt	Next Pt	
Normal	Off	Off	Off
Alert	Intermittent Flash	Fast Flash	On
RESET Pushbutton			
$1_{\text {st }}$ Out Reset	Fast Flash	Fast Flash	On
ACK Pushbutton			
Acknowledge	Steady	Steady	Off
Normal	Off	Off	Off

Maintained Alarm (ACK before RESET)

Condition	LED		Horn
	1st Pt $^{\text {Normal }}$	Off	Next Pt

Sequence F3A Flow Chart

Input Follower Indication
Simple Indication

Condition	LED	Horn
Normal	Off	Off
Alert	Steady	On
Normal	Off	Off

ISA Sequence M

Acknowledge and Reset Pushbuttons

Momentary Alarm

Condition	LED	Horn
Normal	Off	Off
Alert	Flash	On
Normal	Flash	On
ACK Pushbutton		
Acknowledge	Steady	Off
RESET Pushbutton		
Reset	Off	Off

Maintained Alarm

Condition	LED	Horn
Normal	Off	Off
Alert	Flash	On
ACK Pushbutton		
Acknowledge	Steady	Off
Normal	Steady	Off
RESET Pushbutton		
Normal	Off	Off

Sequence M Flow Chart

ISA Sequence F1M

First-Out Indication with Acknowledge and Reset
Pushbuttons, and No-Lock-In of Subsequent Alarms
Momentary Alarm

Condition	LED		Horn
	1st Pt	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
Normal	Flash	Steady	On
RESET Pushbutton			
Reset	Flash	Off	On
ACK Pushbutton			
Acknowledge	Steady	Off	Off
RESET Pushbutton			
Normal	Off	Off	Off

Maintained Alarm

Condition	LED		Horn	
	1st Pt	Next Pt		
Normal	Off	Off	Off	
Alert	Flash	Steady	On	
RESET Pushbutton				
Alert	Flash	Steady	On	
ACK Pushbutton				
Acknowledge	Steady	Steady	Off	
Normal	Steady	Steady	Off	
RESET Pushbutton				
Normal	Off	Off	Off	

Sequence F1M Switch Positions

Sequence F1M Flow Chart

ISA Sequence F2M

First-Out Indication with Acknowledge and Reset Pushbuttons

Momentary Alarm

Condition	LED		Horn
	1st Pt	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
Normal	Flash	Steady	On
ACK Pushbutton			
Acknowledge	Steady	Steady	Off
RESET Pushbutton			
Reset	Off	Off	Off

Maintained Alarm

Condition	LED		Horn
	$1_{\text {st Pt }}$	Next Pt	
Normal	Off	Off	Off
Alert	Flash	Steady	On
ACK Pushbutton			
Acknowledge	Steady	Steady	Off
Normal	Steady	Steady	Off
RESET Pushbutton			
Normal	Off	Off	Off

Sequence F2M
 Switch Positions

Sequence F2M Flow Chart

Condition	Normal
1st Pt LED	Off
Next Pt LED	Off
Horn	Off

Condition	Normal
1st Pt LED	Steady
Next Pt LED	Steady
Horn	Off

Condition	Any
1st Pt LED	Steady
Next Pt LED	Steady
Horn	Off

[^0]: 1The unit will automatically leave setup mode if steps 2 and 3 are not followed.

