

LGB ANNUBAR FLOW METER

Summary

Because of the wide variety of flow measurement techniques and instrumentation types, and the complexity of the objects being measured, flow measurement instrumentation is technically complex to apply. It is very different from the traditional application of metrology measuring instruments - it is not simply to install the flowmeter, open the meter to run will necessarily be able to achieve the purpose of measurement. As most of the flow meters are medium contact type, it is necessary to ensure the safe operation of the instrument on the basis of the instrument, and strive to improve the accuracy of the measurement instrument and energy saving. This is not only to select flow meters with the required accuracy, but also to select a reasonable measurement method according to the characteristics of the measured medium.

Operating Principle

The principle of operation of an Annubar Flow Meter is the same as that of other differential pressure flowmeters, which is based on the principle of energy conservation in a sealed pipe. However, due to its unique structural design, the Annubar Flow Meter offers the following advantages.

- Unique rhombic single-piece, double-cavity structure: a metal-cavity structure made by special
 processing, which avoids the leakage or breakage between the chambers, caused by the multi-piece
 structure or welding process of other shapes of rheostat transducers, and increases the overall strength
 of the sensor part.
- It is suitable for measuring a wide range of medium, like gases/ vapors/liquids, and has a wide range of applications.
- High measurement accuracy and good repeatability accuracy up to ±1.0% and repeatability up to 0.1%.
- Stable measurement signals with low fluctuations.
- Permanent pressure loss is very small, which is about 3% of full scale differential pressure and can be virtually ignored.
- Low installation cost and basically maintenance-free the installation only requires a simple hole and welding on the pipe, with very low cost. There're little moving parts overall and it's basically maintenance-free.
- The temperature and pressure of the medium can be measured directly, and also the mass flow rate and standard flow rate of vapors and gases can be calculated.
- The choke (sensing) elements and transmitters are all common and freely interchangeable, saving the cost of spare parts. Optional intelligent, with HART communication, makes remote configuration possible.

Flow Meter Components

The Annubar Flow Meter consists of a primary choke (sensing) element, a transmitter, and a valve unit.

Transmitter

Primary Element

Measurement Principle

The Annubar Flow Meter is a differential pressure flow meter. Flow instruments based on the differential pressure principle have been in use for more than a hundred years so far. The differential pressure principle is based on the principle of energy conversion in a sealed pipe, which means that for a stable fluid, the flow rate is proportional to the square root of the flow rate of the medium in the pipe. As we know, the pressure decreases as the velocity increases. When the medium is close to the throttle, the pressure is P1; when the medium goes through the throttle area, due to the medium circulation area decreases, so the flow rate will increase, the pressure decreases to P2. When the flow rate changes, the differential pressure value between the two pressure ports of the flow meter will increase or decrease. When the flow rate is constant, if the throttling area is large, the resulting differential pressure will be large.

$$Q = K \cdot Y \sqrt{\frac{\Delta P}{\rho}}$$

Q: Volumetric Flow Rate

K: Dimensionless Constant, varies by flow meter

Y: Gas Compression Coefficient, Y=1 for non-compressed fluids

ΔP=P1-P2, the Pressure Difference between upstream and downstream of the primary choke.

ρ: Fluid Density

Main Advantages

1. Widely used in the measurement of various dry or humid gases, liquids, vapors and other media.

- 2. Special 1.4528 and Hastelloy probe materials are available to cope with a variety of aggressive media.
- 3. Low pressure hole diameter of 8mm, providing good anti-clogging performance.
- 4. Symmetrical probe cross-section, allowing bidirectional measurement.
- 5. Low loss of pipeline power.
- 6. Easy to install, with integrated or split installation options.

Technical Specifications

Type of primary choke (sensing) element (1) (2) (3)

Model	Economical threaded	Economical flange	Accuracy Pipelined			
Wiodei	connection	connection	/ dedracy i ipelified			
Accuracy	1.	0%	0.5%			
Repeatability		±0.2%				
Range Ratio	Usually 10	1, special cases dependin	g on parameters			
Requirements for		Henry OD in front 4D in	back			
Straight Pipe		Usually 8D in front, 4D in	Dack.			
	Reyr	nolds number >6500, No.	05 probes.			
Suitable Sensor Type	Reyn	olds number >12500, No	.10 probes.			
	Reyr	olds number >25000, No	.20 probes			
Pressure Loss	Differential pressure value of 3%, calculated					
Size	DN50-1800					
Temperature	Integral installation up to 260°C					
Temperature	Split type installation up to 400°C					
Flange Standard		ANSI B16.5	ANSI B16.6			
Trange Standard		HG20592	ANSI DIO.0			
Pressure		150#-1500#	150#-1500#			
Pressure Extraction	Throad Socket Wold Conlanar Flance					
Method	Thread, Socket Weld, Coplanar Flange					
Medium	Gases, Liquids, Vapors					
	Medium/low pressure,	High /medium/low	Small diameter, where			
Applicable Situations	conventional	pressure, conventional	precise measurement is			
	applications	applications	required			

Note:

- (1) Use the relevant software package to calculate the flow rate before selecting products.
- (2) This catalog does not include transmitter selection information. if it's needed, please consult the local agent or manufacturer directly.
- (3) The flow meter can be installed vertically, but this should be specified in advance when ordering. For liquids, it is recommended to keep the flow direction from bottom to top, and for gases, it is recommended to keep the flow direction from top to bottom.

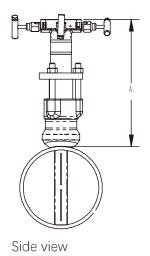
Model Selection Table

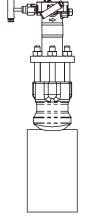
1. Inserted Type

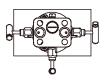
LGB-C	Annubar Flow Meter								
	01	Threaded type							
Process	02	Douk	ole-sid	led support	type v	vith th	readed connection		
Connection	03	Flanç	ge con	nection typ	е				
	04	Douk	ole-sid	led support	type v	vith fla	nge connection		
		Α	Туре	A Sensor					
Sensor Mode	9	В	Туре	B Sensor					
		С	Туре	Type C Sensor					
			S	S316L					
Sensor Mater	rial		Α	alloy stee					
			Е	Special m	Special materials (to be specified)				
Pipe				DN XXX	Size	XXX			
					CS	CS Carbon Steel			
					S1	SS30	4		
Pipe Materia					S2	SS316			
					C5	C5 15CrMo			
					00	Special materials (to be specified)			
						R	Threaded connections, openings on both sides		
						RS	Socket welded, openings on both sides		
Pressure Port						Р	Threaded connection, opening end up		
Plessure Port						PS	Socket weld, open end up		
						F1	Direct standard (connected to a Tri-valve		
							manifold)		

2. Pipelined Type

LGB-G	Annub	ıbar Flow Meter						
Dragon	S	Flat welded flange						
Connection	Process			Butt welded flange				
Connection	Н	Strai	Straight welding (flangeless)					
Sensor Mode	9	A Type A Sensor (Suitable to Size DN50-DN200)						
	В Туре				B Sensor (Suitable to Size DN150-DN900)			
	C Type C Sensor (Suitable to Size DN300-DN1800)				sor (Suitable to Size DN300-DN1800)			
Sensor Mate	Sensor Material S		S	S316L				
	Α			alloy steel				
E				Special materials (to be specified)				
				05	DN50			
Pipe Size	Pipe Size			08	DN80			
				10	DN100			



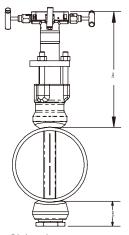

				_	-					
Nominal pressure 150					150	ANSI B	ANSI B16.5 150#Flange RF sealing surface			
300						ANSI B	ANSI B16.5 300# Flange RF sealing surface			
					600	ANSI B	ANSI B16.5 600# Flange RJ sealing surface			
						CS	Carb	on Steel		
						S1	L SS304			
Pipe Material						S2	S2 SS316			
						C5	15CrMo			
						00	Special materials (to be specified)			
							R	Threaded connections, openings on both		
								sides		
Pressure Port							RS Socket welded, openings on both sides			
							F1	Direct standard type		
							F3	Coplanar standard type		

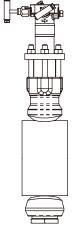

Example: LGB-GSAS05 150CSR: Annubar Flow Meter; Process Connection: Flat Welded Flange; Sensor Type: Type A; Sensor Material: 316L; Piping size: DN50; Nominal Pressure: CL150#; Sealing Surf: RF; Pipe Material: Carbon Steel; Pressure Port: Threaded; Openings: On Side.

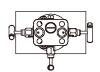
Structural Dimensions

Economical Threaded Connection
 Outline Diagram (Threaded)

Front view

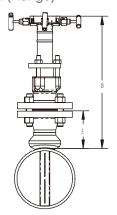

Top view


Structural Dimension Table


Sensor Model	A(Max. mm) [*]		
Type A	220		
Type B	280		
Type C	320		

Outline Diagram (Double-Sided Support)

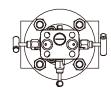
Side view


Front view

Top view

Structural Dimension Table

Sensor Model	A(Max. mm)*	B(Max. mm) [*]
Type A	220	70
Type B	280	70
Type C	320	100


Flange connectionOutline Diagram (Flange)

Front view

Top view

Structural Dimension Table

Sensor Model	A (Max. mm) *	B(Max. mm) [*]
Type A	110	310
Type B	120	360
Type C	130	440

Outline Diagram (Double-Sided Support)

Side view

Front view

Top view

Structural Dimension Table

Sensor Model	A(Max. mm)*	B(Max. mm) [*]	C (Max. mm)
Type A	110	310	70
Type B	120	360	70
Type C	130	440	100